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Anisotropic adaptivity for the �nite element solutions
of three-dimensional convection-dominated problems
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SUMMARY

Convection-dominated problems are typi�ed by the presence of strongly directional features such as
shock waves or boundary layers. Resolution of numerical solutions using an isotropic mesh can lead
to unnecessary re�nement in directions parallel to such features. This is particularly important in three
dimensions where the grid size increases rapidly during conventional isotropic re�nement procedures. In
this work, we investigate the use of adaptive �nite element methods using anisotropic mesh re�nement
strategies for convection-dominated problems. The strategies considered here aim to resolve directional
features without excessive resolution in other directions, and hence achieve accurate solutions more
e�ciently. Two such strategies are described here: the �rst based on minimization of the least-squares
residual; the second based on minimizing a �nite element error estimate. These are incorporated into
an hr-adaptive �nite element method and tested on a simple model problem. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this work we investigate the use of anisotropic mesh re�nement algorithms for the adaptive
�nite element (FE) solution of three-dimensional convection-dominated �ow problems. Con-
ventional mesh adaptivity, based upon a posteriori error estimation and regular h-re�nement
for example, is not always e�cient for this class of problem; where solutions often exhibit
strongly directional features such as sharp layers or shocks. In these regions of the solution
isotropic mesh re�nement results in an unnecessary level of resolution parallel to the �ow fea-
ture being captured in order to deliver the required resolution across the feature. In many such
situations an appropriate anisotropic mesh can yield an equivalent accuracy using substantially
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fewer degrees of freedom, and therefore at a potentially signi�cantly reduced computational
cost.
The fundamental issue that is considered in this paper is that of how to automatically adapt

a three-dimensional tetrahedral mesh in order to obtain appropriate anisotropic meshes for
convection-dominated problems. Our approach is to combine a standard local h-re�nement
algorithm [1], with the use of local node movement in order to either drive down a norm
of the residual [2], or a local a posteriori error estimate [3]. Details of these techniques are
provided in the following two sections. Following this, in Section 4, we present a modi�cation
of the node movement algorithm which permits nodes at di�erent levels of the mesh hierarchy
to be moved independently. An example is presented which demonstrates the advantage of
being able to move the nodes on the coarsest mesh only, dragging higher level nodes with
them. The paper concludes with a brief discussion of how we are currently developing this
work to permit the solution of time-dependent equations and systems.

2. LEAST-SQUARES RESIDUAL MINIMIZATION

Here we present a three-dimensional generalization of previous work in two dimensions,
[4, 2, 5], which aims to combine node movement (frequently referred to as r-re�nement) with
local h-re�nement in order to drive down a given functional (which is bounded below). For
simplicity we describe the application of our technique to a simple linear hyperbolic model
problem of the form

(a ·∇)u=f in �= (0; 1)3 (1)

u=

{
1− x=� x¡�

0 x¿�
on �in= {x∈@� : a · n(x)¡0} (2)

where n(x) is the unit outward normal to the boundary @�. Figure 1 illustrates the nature
of the solution of this problem when f(x)=0; a=(2; 1; 1)T and 0¡��1. The �gure shows
the isosurface u(x)=0:5 and the solution changes rapidly from 0 to 1 as one moves across this

Figure 1. The strongly directional layer that is present in the solution of the model problem.
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Figure 2. Local reconnection operation for the union of 2 tetrahedra: (a) two initial
tetrahedra; (b) three modi�ed tetrahedra.

isosurface. In all of the calculations which follow we use �=0:01 and the above choices of
f(x) and a.
In order to de�ne a suitable functional for minimization we consider the residual of (1) for

a piecewise linear approximation to u; uh say, on a tetrahedral mesh which covers �

rh=f − (a ·∇)uh (3)

Following Reference [2] we now introduce the functional

R(uh)=
1
2

∫
�
(rh)2 dx=

1
2
∑
k

∫
�k
(rh)2 dx (4)

where the summation is over all tetrahedra �k in the given mesh. The optimization scheme
that we apply is as follows:

1. Order the nodes of the mesh according to their distance downstream of the in�ow
boundary.

2. For each node i (located at xi, say) in this ordering:
(a) �nd @R=@x (details of this calculation are given in Appendix A).
(b) perform a 1-D minimization of R in this direction of steepest descent.
(c) solve a local version of (1) on the elements surrounding node i to update the

solution values at this node and those on the downstream boundary of this patch.
Repeat this step a �xed number of times.

3. For each internal face in the mesh consider reconnecting the union of the two tetrahedra
sharing this face into three tetrahedra as shown in Figure 2; the topology yielding the
lower value of (4) being accepted.

4. Perform h-re�nement on those elements with a local L2 residual greater than a �xed
fraction of the maximum residual and recompute the global least-squares solution.

The ordering of the nodes in step 1 is not essential, however, it dramatically improves the
convergence of the minimization procedure in step 2 (for the computations presented here
only 3 repetitions of this step are required, for example). The h-re�nement in step 4 uses
a �xed fraction strategy which allows a simple comparison to be made between h and hr
algorithms, since similar numbers of elements will be produced after each re�nement stage.
Here the top 20% of the elements, ranked by their local L2 residual, are re�ned. The algorithm
can be terminated when either a desired value of the least-squares residual is obtained or a
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Table I. Sample results using the residual minimization scheme.

hr-Re�nement h-Re�nement

NP R(uh) ‖e‖1 NP R(uh) ‖e‖1
Solve 729 1.016 0.075 729 1.016 0.075
Optimize 0.381 0.056
Adapt=solve 3072 0.189 0.034 3313 0.428 0.180
Optimize 0.130 0.031
Adapt=solve 15 353 0.180 0.031

maximum number of elements has been reached. The need for the simple ‘edge-swapping’
sweep (step 3) is illustrated in 2-D in References [4, 2, 6] for example. This assists with the
alignment of the edges in the mesh with the �ow features that we wish to capture.
Table I illustrates some sample results obtained when the proposed scheme is applied to

our linear model problem. It is apparent that, measured either in terms of the residual or the
exact error, the hr-re�nement approach provides a signi�cant improvement over the use of
local h-re�nement alone (in this calculation a similar accuracy is obtained with just a �fth of
the number of node points (NP) for example).

3. MINIMIZATION OF ESTIMATED a posteriori ERROR

As an alternative to controlling the mesh adaptivity process through the local residual we now
consider the use of an a posteriori error estimate. Provided that the error can be estimated
su�ciently accurately it is clearly more desirable to control this quantity. Our approach is the
commonly used one of References [7, 3], for example, where it is observed that subtraction
of (1) from (3) yields the error equation

(a ·∇)e= rh (5)

for e= u − uh. This PDE is solved subject to an exact in�ow boundary condition on �in but
using either a di�erent mesh or numerical scheme from that applied to obtain uh. In this work
we use a stable streamline-di�usion linear �nite element method [8], to calculate uh and a
cell-centred �nite volume scheme [9], to compute eh (an estimate of e) on each element. The
adaptivity algorithm that we then apply is as follows:

1. For each node in the mesh:
(a) �nd

xavi =
∑

k∈�i |ehk |xck∑
k∈�i |ehk |

where �i= {k :xi∈�k}; ehk is the computed error in cell k and xck is the position
of the centroid of cell k,

(b) set xi := (1 − �)xi + �xavi , where �∈(0; 1) is an under-relaxation parameter, taken
here to be �xed at �=0:5.
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Table II. Sample results using r-re�nement driven by the error.

hr-Re�nement h-Re�nement
Driven by e Driven by eh Driven by e Driven by eh

NP ‖e‖1 NP ‖e‖1 NP ‖e‖1 NP ‖e‖1
729 0.111 729 0.111 729 0.111 729 0.111

0.104 0.104
0.094 0.102

2826 0.052 3021 0.069 2761 0.070 2799 0.079
0.050 0.065
0.046 0.062

12 412 0.038 12 260 0.043 12 026 0.045 11 437 0.051
0.033 0.039
0.029 0.037

50 737 0.020 44 051 0.026 52 871 0.027 44 105 0.032
0.018 0.023
0.016 0.022

Repeat this step a �xed number of times.
2. Perform h-re�nement on those elements with an estimated error greater than a �xed
fraction of the maximum error on any element and recompute the global solution and
error estimate.

Step 1 is repeated 3 times for the computations presented here, further repetitions do not lead
to any signi�cant increase in accuracy. The �xed fraction for h-re�nement is again taken to
be 20%. As in the previous section, these steps may be repeated until a desired value of
the estimated error is obtained or a maximum number of elements has been reached. Note
that, unlike for the residual minimization approach there is no straightforward mechanism for
incorporating edge-swapping into this algorithm.
Table II presents some sample results when this algorithm is used to solve the linear

model problem previously considered. In order to allow the dependency on our choice of
solver for (5) to be assessed additional statistics are presented to show how the algorithm
performs when the exact error, which is known for this problem, is used rather than the
estimated error eh. In both cases the hr-re�nement scheme again outperforms standard h-
re�nement, with similar errors requiring about a third the number of node points. An indi-
cation of the contrasting meshes produced by these two forms of adaptivity is provided in
Figure 3.

4. HIERARCHICAL r-REFINEMENT

It has been demonstrated that the inclusion of node movement within each of the adaptive
algorithms considered leads to better quality meshes than are otherwise obtained. Further-
more, from Figure 3, it may be observed that this node movement allows the element shape
to deform in line with the anisotropic features of the solution. It should be noted however
that the cost of the node movement grows signi�cantly as the size of the �nite element
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Figure 3. Two sample meshes obtained during the solution of the model problem: the �rst, obtained
using h-re�nement, contains 13 002 elements but leads to a solution error which is almost twice that of

the second grid, containing 13 343 elements, obtained using hr-re�nement.

Figure 4. The movement of a root mesh node in two dimensions.

mesh increases since the position of every node must be updated independently at each
r-re�nement step. The main development that we consider in this section therefore is to
utilize the h-re�nement hierarchy in order to move only the coarse mesh nodes indepen-
dently, with the movement of the nodes produced at �ner mesh levels being dependent upon
this.
The proposed approach is to follow essentially the same algorithms as outlined in the

previous sections but, instead of looping through every node in the mesh at the r-re�nement
stage, only the nodes contained in the initial mesh (i.e. the root mesh, at the lowest level of
the h-re�nement hierarchy) are visited. When the position of one of these nodes is updated
then so too is the position of all nodes in the interior of the patch of root mesh elements
surrounding this node. This is illustrated for a two-dimensional example in Figure 4. Note that
the dependent node positions are updated so that their barycentric co-ordinates with respect
to the root mesh elements remain unchanged.
For clarity we describe the detail of this approach in the context of the residual minimization

procedure of Section 2. In particular, we note that the ‘edge-swapping’ phase may still be
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Table III. An example where the root node movement strategy proves to be advantageous over
the original version of the algorithm in which all node positions are updated independently.

Original hr-re�nement Modi�ed hr-re�nement

NP R(uh) ‖e‖1 NP R(uh) ‖e‖1
Global solve 4913 53.45 0.0237 4913 53.45 0.0237
r-Re�ne=local solve 13.78 0.0059 7.39 0.0028
h-Re�ne=global solve 13 536 4.05 0.0016 13 155 2.05 0.0007
r-Re�ne=local solve 2.57 0.0010 1.88 0.0007
h-Re�ne=global solve 40 186 1.47 0.0004 38 606 0.54 0.0002
r-Re�ne=local solve 1.33 0.0004 0.54 0.0002

completed in principle although it does add signi�cantly to the overall complexity of the
implementation. The calculation of @R=@xi, at step 2(a) is also made more expensive since

@R
@xi

=
∑
j∈Pi

�i; j
@R
@xj

(6)

where Pi= {j: xj∈{points in those root mesh elements with a vertex at xi}} and �i; j is the
barycentric co-ordinate of xj with respect to the vertex of its parent root element that is xi. It
should be noted however that all expressions (6), i.e. for each root node i, may be assembled
together in a single loop through the leaf mesh elements (making use of expression (10) in
Appendix A). Table III presents a comparison of using this root node movement approach
with the original hr-re�nement algorithm for a slightly di�erent test problem to (1) which
has the solution u(x)= e−x1=�. When � is small (0:01 in this example) this solution has a
boundary layer next to x1 = 0. It is apparent that, for this particular problem, coarse mesh
movement is advantageous since it allows the nodes to move into the boundary layer region
near x1 = 0 more quickly than with the original r-re�nement approach.

5. DISCUSSION

The generalization of both the least-squares solution technique and the a posteriori error
estimate to linear systems of equations is relatively straightforward and hence the adaptive
algorithms introduced in this paper may both be applied to such problems. Clearly, if di�er-
ent components of the solution have di�erent directional behaviour then the scope for using
anisotropic meshes will be reduced, however for many physical problems similar directional
solution features are present in all components and the bene�ts of our hr-re�nement strategies
will again become apparent. Extensions to time-dependent problems are also under develop-
ment with the aid of the hierarchical r-re�nement described in Section 4. By only moving the
root mesh nodes independently it is still possible to apply both h-re�nement and dere�nement
(necessary for time-dependent problems [1]) without disturbing the mesh hierarchy within the
adaptive h-re�nement code.
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APPENDIX A: NODAL DERIVATIVES OF THE RESIDUAL FUNCTIONAL

In order to determine the direction of steepest decent in the residual minimization algorithm
of Section 2 it is necessary to evaluate expressions of the form @R=@xi, where xi is the
location of node i. In order to do this we use the following two results which are proved in
References [10, Theorem 2.4, 11, Lemma 3.1], respectively

@uh

@xi
=−Ni∇uh (A.1)

@V k

@xi
= V k∇Ni (A.2)

Here V k is the volume of any simplex �k which has a vertex at xi, and Ni is the usual
piecewise linear basis function which has value 1 at xi. From (3) and (4) we have

@R
@xi

=
1
2

∑
k∈�i

@
@xi

∫
�k
(f − (a ·∇)uh)2 dx (where �i= {k :xi∈�k})

=
1
2

∑
k∈�i

@
@xi

∫
�
(f − (a ·∇)uh)2V k d^

(where � is some reference tetrahedron with unit volume)

=
∑
k∈�i

∫
�

[
(f − (a ·∇)uh)

(
−(a ·∇) @u

h

@xi

)
V k +

1
2
(f − (a ·∇)uh)2 @V

k

@xi

]
d^

=
∑
k∈�i

∫
�k

[
(f − (a ·∇)uh)((a ·∇)Ni)∇uh + 12(f − (a ·∇)uh)2∇Ni

]
dx

(where (A:1) and (A:2) have been applied) (A.3)

Hence, when f(x)=0, as in our example problem, expression (A.3) simpli�es further to
yield

@R
@xi

=
∑
k∈�i

V k((a ·∇)uh)k
(
1
2
((a ·∇)uh)k∇Ni − ((a ·∇)Ni)k∇uh

)
(A.4)

where (·)k denotes the restriction of the quantity within the brackets to element k.
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